论文标题
对发射车上阶段的随机控制,并具有最小变化的溅射
Stochastic Control of Launch Vehicle Upper Stage with Minimum-Variance Splash-Down
论文作者
论文摘要
本文提出了一种新型的合成方法,用于使用凸方法设计最佳且可靠的指导定律,以针对发射车的不可碰撞上层阶段。在不受干扰的情况下,使用无损和连续的凸化技术的组合来制定指导问题,作为一系列凸问题,该凸问题产生了最佳轨迹,可作为反馈控制器设计的参考,而计算工作很少。然后,基于参考状态和控制,定义了随机最佳控制问题,以找到拒绝随机飞行内部干扰的闭环控制定律。该控制被参数化为乘法反馈定律;因此,仅调节控制方向,而幅度对应于标称方向,从而使其用于固体火箭电动机。优化的目的是最大程度地减少飞溅的分散体,以确保支出阶段尽可能接近标称点。得益于原始的凸化策略,随机最佳控制问题可以在多项式时间内解决,因为它可以减少到半限定的编程问题。数值结果评估了随机控制器的鲁棒性,并通过广泛的蒙特卡洛运动将其性能与模型预测控制算法进行比较。
This paper presents a novel synthesis method for designing an optimal and robust guidance law for a non-throttleable upper stage of a launch vehicle, using a convex approach. In the unperturbed scenario, a combination of lossless and successive convexification techniques is employed to formulate the guidance problem as a sequence of convex problems that yields the optimal trajectory, to be used as a reference for the design of a feedback controller, with little computational effort. Then, based on the reference state and control, a stochastic optimal control problem is defined to find a closed-loop control law that rejects random in-flight disturbance. The control is parameterized as a multiplicative feedback law; thus, only the control direction is regulated, while the magnitude corresponds to the nominal one, enabling its use for solid rocket motors. The objective of the optimization is to minimize the splash-down dispersion to ensure that the spent stage falls as close as possible to the nominal point. Thanks to an original convexification strategy, the stochastic optimal control problem can be solved in polynomial time since it reduces to a semidefinite programming problem. Numerical results assess the robustness of the stochastic controller and compare its performance with a model predictive control algorithm via extensive Monte Carlo campaigns.