论文标题

边缘图像的重建与颜色和工业表面异常检测的梯度差相结合

Reconstruction from edge image combined with color and gradient difference for industrial surface anomaly detection

论文作者

Liu, Tongkun, Li, Bing, Zhao, Zhuo, Du, Xiao, Jiang, Bingke, Geng, Leqi

论文摘要

基于重建的方法在工业视觉异常检测中得到了广泛的探索。这种方法通常要求模型很好地重建正常模式,但在异常中失败,因此可以通过评估重建误差来检测异常。但是,实际上,通常很难控制模型的概括边界。具有过度强大的概括能力的模型甚至可以很好地重建异常区域,从而使其不可区分,而概括能力较差的模型无法重建正常区域中那些可变的高频组件,最终导致误报。为了解决上述问题,我们提出了一个新的重建网络,在该网络中,我们从其灰色值边(EDGREC)重建原始RGB图像。具体而言,这是通过使用跳过连接的UNET类型Denoing AutoCoder实现的。输入边缘和跳过连接可以很好地保留原始图像中的高频信息。同时,提出的恢复任务可以迫使网络记住正常的低频和颜色信息。此外,转化设计可以防止模型直接复制原始的高频率组件。为了评估异常情况,我们进一步提出了一种新的可解释的手工评估功能,以考虑颜色和梯度差异。我们的方法在具有挑战性的基准MVTEC AD(检测97.8%,本地化97.7 \%,AUROC)上取得了竞争性结果。此外,我们在MVTEC 3D-AD数据集上进行实验,并仅使用RGB图像显示令人信服的结果。我们的代码将在https://github.com/liutongkun/edgrec上找到。

Reconstruction-based methods are widely explored in industrial visual anomaly detection. Such methods commonly require the model to well reconstruct the normal patterns but fail in the anomalies, and thus the anomalies can be detected by evaluating the reconstruction errors. However, in practice, it's usually difficult to control the generalization boundary of the model. The model with an overly strong generalization capability can even well reconstruct the abnormal regions, making them less distinguishable, while the model with a poor generalization capability can not reconstruct those changeable high-frequency components in the normal regions, which ultimately leads to false positives. To tackle the above issue, we propose a new reconstruction network where we reconstruct the original RGB image from its gray value edges (EdgRec). Specifically, this is achieved by an UNet-type denoising autoencoder with skip connections. The input edge and skip connections can well preserve the high-frequency information in the original image. Meanwhile, the proposed restoration task can force the network to memorize the normal low-frequency and color information. Besides, the denoising design can prevent the model from directly copying the original high-frequent components. To evaluate the anomalies, we further propose a new interpretable hand-crafted evaluation function that considers both the color and gradient differences. Our method achieves competitive results on the challenging benchmark MVTec AD (97.8\% for detection and 97.7\% for localization, AUROC). In addition, we conduct experiments on the MVTec 3D-AD dataset and show convincing results using RGB images only. Our code will be available at https://github.com/liutongkun/EdgRec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源