论文标题
改善磁陷阱中分子的负载,冷却和捕获
Towards improved loading, cooling, and trapping of molecules in magneto-optical traps
论文作者
论文摘要
最近的实验表明,在磁光陷阱(MOTS)中,双原子和三局分子的直接冷却和捕获。但是,即使是迄今为止最好的分子MOT,也比典型的原子MOT小$ 10^{ - 5} $倍。主要的限制因素是:(i)速度减慢到足够低以至于被MOT捕获的速度的效率低下,(ii)MOT捕获速度低,以及(iii)由subppler加热引起的MOT中密度的限制〜[J。 A. Devlin和M. R. Tarbutt,物理。修订版A \ textbf {90},063415(2018)]。所有这些都是需要驱动“型II型”光循环转变的后果,在Zeeman sublevels中出现黑暗状态,以避免旋转分支。我们提出模拟,展示减轻这些限制的方法。这应该为将分子加载到具有足够高的密度和数量的保守陷阱中铺平道路,以使它们蒸发至量子变性。
Recent experiments have demonstrated direct cooling and trapping of diatomic and triatomic molecules in magneto-optical traps (MOTs). However, even the best molecular MOTs to date still have density $10^{-5}$ times smaller than in typical atomic MOTs. The main limiting factors are: (i) inefficiencies in slowing molecules to velocities low enough to be captured by the MOT, (ii) low MOT capture velocities, and (iii) limits on density within the MOT resulting from sub-Doppler heating~[J. A. Devlin and M. R. Tarbutt, Phys. Rev. A \textbf{90}, 063415 (2018)]. All of these are consequences of the need to drive `Type-II' optical cycling transitions, where dark states appear in Zeeman sublevels, in order to avoid rotational branching. We present simulations demonstrating ways to mitigate each of these limitations. This should pave the way towards loading molecules into conservative traps with sufficiently high density and number to evaporatively cool them to quantum degeneracy.