论文标题
超出统计不确定性的流行模型中的固有随机性
Intrinsic Randomness in Epidemic Modelling Beyond Statistical Uncertainty
论文作者
论文摘要
不确定性可以归类为核心(内在的随机性)或认知(参数不完美的知识)。评估传染病风险的大多数框架仅考虑认知不确定性。我们只有观察到一种流行病,因此无法从经验上确定不确定性。在这里,我们使用时间变化的一般分支过程来表征认知和核心不确定性。我们的框架将核心方差明确分解为机械组成部分,从而量化了流行病过程中每个因素产生的不确定性的贡献,以及这些贡献如何随着时间而变化。爆发的差异差异本身就是一个更新方程,过去的差异会影响未来的差异。我们发现,对于实质性不确定性而言,超级宣传并不是必需的,即使没有过度分散的后代分布(即感染者产生的继发性感染的分布),爆发大小的巨大变化也可能发生。势利预测的不确定性动态和快速增长,因此仅使用认知不确定性的预测是一个重大的低估。因此,未能说明态度的不确定性将确保政策制定者误以为潜在风险的真实程度更高。我们使用两个历史例子证明了我们的方法以及潜在风险被低估的程度。
Uncertainty can be classified as either aleatoric (intrinsic randomness) or epistemic (imperfect knowledge of parameters). The majority of frameworks assessing infectious disease risk consider only epistemic uncertainty. We only ever observe a single epidemic, and therefore cannot empirically determine aleatoric uncertainty. Here, we characterise both epistemic and aleatoric uncertainty using a time-varying general branching process. Our framework explicitly decomposes aleatoric variance into mechanistic components, quantifying the contribution to uncertainty produced by each factor in the epidemic process, and how these contributions vary over time. The aleatoric variance of an outbreak is itself a renewal equation where past variance affects future variance. We find that, superspreading is not necessary for substantial uncertainty, and profound variation in outbreak size can occur even without overdispersion in the offspring distribution (i.e. the distribution of the number of secondary infections an infected person produces). Aleatoric forecasting uncertainty grows dynamically and rapidly, and so forecasting using only epistemic uncertainty is a significant underestimate. Therefore, failure to account for aleatoric uncertainty will ensure that policymakers are misled about the substantially higher true extent of potential risk. We demonstrate our method, and the extent to which potential risk is underestimated, using two historical examples.