论文标题

polyhope:来自Tweets的两级希望语音检测

PolyHope: Two-Level Hope Speech Detection from Tweets

论文作者

Balouchzahi, Fazlourrahman, Sidorov, Grigori, Gelbukh, Alexander

论文摘要

希望被认为是对未来的开放性,欲望,期望和希望发生的事情或真实地影响人类心理状态,情感,行为和决策的真实性。希望通常与有关未来的期望和可能性/概率的概念有关。尽管它很重要,但希望很少作为社交媒体分析任务进行研究。本文提出了一个希望的演讲数据集,该数据集将每条推文首先分为“希望”和“不希望”,然后分为三个细粒的希望类别:“广义希望”,“现实的希望”和“不切实际的希望”(以及“不希望”)。收集了2022年上半年的英文推文以构建此数据集。此外,我们详细描述了我们的注释过程和准则,并讨论了对希望分类的挑战以及现有的希望语音检测语料库的局限性。此外,我们根据不同的学习方法(例如传统的机器学习,深度学习和变形金刚)报告了几个基线,以基准我们的数据集。我们使用加权平均和宏观平均的F1分数评估了基层。观察结果表明,注释器选择和详细注释指南的严格过程提高了数据集的质量。这种严格的注释过程为仅使用BI-Grams的简单机器学习分类器提供了有希望的性能。但是,二进制和多类希望语音检测结果表明,上下文嵌入模型在该数据集中具有更高的性能。

Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源