论文标题

非线性半群和限制定理以达到凸期的期望

Nonlinear semigroups and limit theorems for convex expectations

论文作者

Blessing, Jonas, Kupper, Michael

论文摘要

基于Chernoff的近似,我们为连续W.R.T.的凸单酮半群提供了一般的近似结果。连续功能的合适空间上的混合拓扑。从一个家庭$(i(t))_ {t \ geq 0} $开始,将半群构造为限制$ s(t)f:= \ lim_ {n \ to \ infty} i(\ frac {t} {n} {n} {n} {n})^n f $,并且按时间导出$ i'(0)f $'(0)f $'(0)f $'(0)f。我们确定了生成家庭$(i(t))_ {t \ geq 0} $的明确条件,该_ {t \ geq 0} $转移到semigroup $(s(t))_ {t \ geq 0} $,并且可以在应用程序中轻松验证。此外,非线性半群的Chernoff类型近似与大量定律和中央限制定理类型的结果之间存在结构联系。该框架还包括较大的偏差结果。

Based on the Chernoff approximation, we provide a general approximation result for convex monotone semigroups which are continuous w.r.t. the mixed topology on suitable spaces of continuous functions. Starting with a family $(I(t))_{t\geq 0}$ of operators, the semigroup is constructed as the limit $S(t)f:=\lim_{n\to\infty}I(\frac{t}{n})^n f$ and is uniquely determined by the time derivative $I'(0)f$ for smooth functions. We identify explicit conditions for the generating family $(I(t))_{t\geq 0}$ that are transferred to the semigroup $(S(t))_{t\geq 0}$ and can easily be verified in applications. Furthermore, there is a structural link between Chernoff type approximations for nonlinear semigroups and law of large numbers and central limit theorem type results for convex expectations. The framework also includes large deviation results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源