论文标题

使用机器学习方法探索天气对地铁需求预测的影响

Exploring the impact of weather on Metro demand forecasting using machine learning method

论文作者

Hu, Yiming, Huang, Yangchuan, Liu, Shuying, Qi, Yuanyang, Bai, Danhui

论文摘要

城市铁路运输提供了巨大的综合收益,例如大型交通量和高速,是城市交通建设管理和拥塞解决方案的最重要组成部分之一。从2018年4月到6月,使用亚洲地铁系统的真实乘客流数据,这项工作通过短期交通流量预测来分析乘客流量的时空分布。电台分为四种类型的乘客流量预测,并在同一时期收集了气象记录。然后,应用具有不同输入的机器学习方法,并执行多元回归,以评估每个天气元素每小时对代表地铁站的乘客流量预测的改进效果。我们的结果表明,通过输入天气变量,周末预测的精度得到了增强,而工作日的表现只会略有改善,而天气的不同元素的贡献也有所不同。同样,不同类别的电台受到天气的影响不同。这项研究提供了一种可能进一步改善其他预测模型的方法,并证明了数据驱动分析的承诺,以优化公交管理中的短期计划。

Urban rail transit provides significant comprehensive benefits such as large traffic volume and high speed, serving as one of the most important components of urban traffic construction management and congestion solution. Using real passenger flow data of an Asian subway system from April to June of 2018, this work analyzes the space-time distribution of the passenger flow using short-term traffic flow prediction. Stations are divided into four types for passenger flow forecasting, and meteorological records are collected for the same period. Then, machine learning methods with different inputs are applied and multivariate regression is performed to evaluate the improvement effect of each weather element on passenger flow forecasting of representative metro stations on hourly basis. Our results show that by inputting weather variables the precision of prediction on weekends enhanced while the performance on weekdays only improved marginally, while the contribution of different elements of weather differ. Also, different categories of stations are affected differently by weather. This study provides a possible method to further improve other prediction models, and attests to the promise of data-driven analytics for optimization of short-term scheduling in transit management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源