论文标题

具有不可靠的信息来源的多保真贝叶斯优化

Multi-Fidelity Bayesian Optimization with Unreliable Information Sources

论文作者

Mikkola, Petrus, Martinelli, Julien, Filstroff, Louis, Kaski, Samuel

论文摘要

贝叶斯优化(BO)是优化黑盒,昂贵评估功能的强大框架。在过去的十年中,已经提出了许多算法将目标函数的较便宜,下前保性近似集成到优化过程中,目的是在降低成本下趋向全局最佳选择。此任务通常称为多保真贝叶斯优化(MFBO)。但是,MFBO算法可能会导致比其香草BO的优化成本更高,尤其是当低保真源的目标函数近似值较差时,因此击败了他们的目的。为了解决此问题,我们提出了RMFBO(强大的MFBO),这是一种使任何基于GP的MFBO方案可靠的方法来添加不可靠的信息源。 RMFBO具有理论上的保证,即其性能可以与其香草Bo Analog绑定,并具有很高的可控概率。我们证明了所提出的方法对许多数值基准的有效性,在不可靠来源上的早期MFBO方法表现优于早期的MFBO方法。我们希望RMFBO可靠地包括在BO过程中具有不同知识的人类专家特别有用。

Bayesian optimization (BO) is a powerful framework for optimizing black-box, expensive-to-evaluate functions. Over the past decade, many algorithms have been proposed to integrate cheaper, lower-fidelity approximations of the objective function into the optimization process, with the goal of converging towards the global optimum at a reduced cost. This task is generally referred to as multi-fidelity Bayesian optimization (MFBO). However, MFBO algorithms can lead to higher optimization costs than their vanilla BO counterparts, especially when the low-fidelity sources are poor approximations of the objective function, therefore defeating their purpose. To address this issue, we propose rMFBO (robust MFBO), a methodology to make any GP-based MFBO scheme robust to the addition of unreliable information sources. rMFBO comes with a theoretical guarantee that its performance can be bound to its vanilla BO analog, with high controllable probability. We demonstrate the effectiveness of the proposed methodology on a number of numerical benchmarks, outperforming earlier MFBO methods on unreliable sources. We expect rMFBO to be particularly useful to reliably include human experts with varying knowledge within BO processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源