论文标题
自分解水凝胶摩擦的分子机制
Molecular mechanisms of self-mated hydrogel friction
论文作者
论文摘要
在低负载下,自我分配的水凝胶接触显示出极小的摩擦系数,但速度依赖性明显。在这里,我们结合了介质模拟和实验,以测试该速度依赖性的聚合物 - 浮气假设,当界面依赖性方向上出现界面聚合物链的扰动比其在高速速度下的弛豫更快时出现。我们的模拟以低速下的速度独立摩擦来重现实验发现,然后是摩擦系数,该系数以速度升至某种秩序统一的速度。我们表明,速度依赖性状态的特征是剪切方向的聚合物链的重新定位和拉伸,导致熵应力与剪切响应有定量相关。速度依赖性方案中权力定律的详细指数取决于链的相互作用:我们观察到可以伸展的连锁店接近$ 1/2 $的电源,而纯正的重新定位会导致团结的力量。我们的模拟定量匹配实验,并表明在低负载下水凝胶摩擦的速度依赖性可以牢固地追溯到近地表链的形态。
Self-mated hydrogel contacts show extremely small friction coefficients at low loads but a distinct velocity dependence. Here we combine mesoscopic simulations and experiments to test the polymer-relaxation hypothesis for this velocity dependence, where a velocity-dependent regime emerges when the perturbation of interfacial polymer chains occurs faster than their relaxation at high velocity. Our simulations reproduce the experimental findings, with speed-independent friction at low velocity, followed by a friction coefficient that rises with velocity to some power of order unity. We show that the velocity-dependent regime is characterized by reorientation and stretching of polymer chains in the direction of shear, leading to an entropic stress that can be quantitatively related to the shear response. The detailed exponent of the power law in the velocity dependent regime depends on how chains interact: We observe a power close to $1/2$ for chains that can stretch, while pure reorientation leads to a power of unity. Our simulations quantitatively match experiments and show that the velocity dependence of hydrogel friction at low loads can be firmly traced back to the morphology of near-surface chains.