论文标题
Erdős的两个上限 - -Hooley Delta功能
Two upper bounds for the Erdős--Hooley Delta-function
论文作者
论文摘要
对于Integer $ n \ geqslant 1 $和Real $ u $,让$δ(n,u):= | \ {d:d \ mid n,\,{\ rm e}^u <d \ leqslant {\ rm e}然后,Erdős--hooley delta功能由$δ(n)定义:= \ max_ {u \ in {\ mathbb r}}Δ(n,u)。$我们改善了此算术功能的平均值和正常订单的当前上限。
For integer $n\geqslant 1$ and real $u$, let $Δ(n,u):=|\{d:d\mid n,\,{\rm e}^u<d\leqslant {\rm e}^{u+1}\}|$. The Erdős--Hooley Delta-function is then defined by $Δ(n):=\max_{u\in{\mathbb R}}Δ(n,u).$ We improve the current upper bounds for the average and normal orders of this arithmetic function.