论文标题
准周期性伊辛模型中的准粒子动力学具有暂时波动的横向场
Quasi-Particle Dynamics in Quasi-Periodic Ising Model with Temporally Fluctuating Transverse Fields
论文作者
论文摘要
我们研究了具有时间波动的横向场的准周期性伊辛模型中的准粒子动力学。具体而言,我们计算在每个时间间隔从二进制值$ \ pm h $随机选择的字段下扩展的准粒子标准偏差的动态指数。我们发现,动态指数的短时行为取决于时间波动场的间隔。我们还揭示了准粒子动力学如何影响自旋旋转相关函数的松弛。可以通过$ \ pm h $的哈密顿量的特征向量之间的重叠来解释动力学。
We study quasi-particle dynamics in a quasi-periodic Ising model with temporally fluctuating transverse fields. Specifically, we calculate the dynamical exponents of the standard deviation of a quasi-particle spreading under a field chosen randomly from binary values $\pm h$ at every time interval. We find that the short-time behavior of the dynamical exponents depends on the interval of the temporally fluctuating fields. We also reveal how the quasi-particle dynamics affects the relaxation of spin-spin correlation functions. The dynamics can be explained via the overlap between the eigenvectors of a Hamiltonian with $\pm h$.