论文标题

Dextreme:敏捷的操纵从模拟转移到现实

DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to Reality

论文作者

Handa, Ankur, Allshire, Arthur, Makoviychuk, Viktor, Petrenko, Aleksei, Singh, Ritvik, Liu, Jingzhou, Makoviichuk, Denys, Van Wyk, Karl, Zhurkevich, Alexander, Sundaralingam, Balakumar, Narang, Yashraj, Lafleche, Jean-Francois, Fox, Dieter, State, Gavriel

论文摘要

最近的工作证明了深钢筋学习(RL)算法在模拟中学习复杂的机器人行为的能力,包括在多指操作的领域中。但是,由于模拟与现实之间的差距,此类模型将转移到现实世界的挑战。在本文中,我们介绍了培训a)可以在拟人化机器人手上执行强大灵巧操纵的政策,b)适用于提供可靠的实时信息的稳健姿势估计器,以提供有关被操纵的物体状态的可靠实时信息。我们的政策经过培训以适应多种模拟条件。因此,我们基于愿景的政策在同一重新定位任务中的文献中极大地超过了文献中的最佳愿景政策,并且与通过运动捕获系统获得特权状态信息的策略具有竞争力。我们的工作重申了SIM到现实转移的可能性,以在各种硬件和模拟器设置中进行灵巧的操作,在我们的情况下,使用Allegro Hand和ISAAC GYM基于GPU的模拟。此外,它为研究人员提供了使用通常可用的,负担得起的机器人手和相机实现此类结果的可能性。可以在https://dextreme.org/上找到结果政策和补充信息(包括实验和演示)的视频。

Recent work has demonstrated the ability of deep reinforcement learning (RL) algorithms to learn complex robotic behaviours in simulation, including in the domain of multi-fingered manipulation. However, such models can be challenging to transfer to the real world due to the gap between simulation and reality. In this paper, we present our techniques to train a) a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand and b) a robust pose estimator suitable for providing reliable real-time information on the state of the object being manipulated. Our policies are trained to adapt to a wide range of conditions in simulation. Consequently, our vision-based policies significantly outperform the best vision policies in the literature on the same reorientation task and are competitive with policies that are given privileged state information via motion capture systems. Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups, and in our case, with the Allegro Hand and Isaac Gym GPU-based simulation. Furthermore, it opens up possibilities for researchers to achieve such results with commonly-available, affordable robot hands and cameras. Videos of the resulting policy and supplementary information, including experiments and demos, can be found at https://dextreme.org/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源