论文标题
平面随机热方程中的KPZ波动
KPZ fluctuations in the planar stochastic heat equation
论文作者
论文摘要
我们使用Skorokhod积分的版本来简单而严格地配制了带有平面白噪声的灯芯(随机)热方程式,代表了无向随机聚合物的自由能。所有时间的解决方案都表示为Feyman-Kac公式给出的Martingale的L1极限,并定义了随机移位或高斯乘法混乱。远离中心的波动被证明是由一维KPZ方程给出的。
We use a version of the Skorokhod integral to give a simple and rigorous formulation of the Wick-ordered (stochastic) heat equation with planar white noise, representing the free energy of an undirected random polymer. The solution for all times is expressed as the L1 limit of a martingale given by the Feyman-Kac formula and defines a randomized shift, or Gaussian multiplicative chaos. The fluctuations far from the centre are shown to be given by the one-dimensional KPZ equation.