论文标题

以人为本的XAI用于燃烧深度表征

Human-centered XAI for Burn Depth Characterization

论文作者

Jacobson, Maxwell J., Arrubla, Daniela Chanci, Tricas, Maria Romeo, Gordillo, Gayle, Xue, Yexiang, Sen, Chandan, Wachs, Juan

论文摘要

每年,美国约有125万人因烧伤受伤而受到治疗。精确的烧伤损伤分类是医疗AI领域的重要方面。在这项工作中,我们提出了一个可以解释的人类在环境框架中,以改善燃烧超声分类模型。我们的框架利用基于石灰分类解释器的解释系统来证实和整合燃烧专家的知识 - 提出新功能并确保模型的有效性。使用此框架,我们发现可以通过提供纹理特征来增强B模式超声分类器。更具体地说,我们确认基于超声框架的灰度共存在矩阵(GLCM)的纹理特征可以提高转移学习的燃烧深度分类器的准确性。我们对猪受试者的真实数据进行检验。我们显示出燃烧深度分类的准确性的提高 - 从〜88%到〜94% - 一旦根据我们的框架进行了修改。

Approximately 1.25 million people in the United States are treated each year for burn injuries. Precise burn injury classification is an important aspect of the medical AI field. In this work, we propose an explainable human-in-the-loop framework for improving burn ultrasound classification models. Our framework leverages an explanation system based on the LIME classification explainer to corroborate and integrate a burn expert's knowledge -- suggesting new features and ensuring the validity of the model. Using this framework, we discover that B-mode ultrasound classifiers can be enhanced by supplying textural features. More specifically, we confirm that texture features based on the Gray Level Co-occurance Matrix (GLCM) of ultrasound frames can increase the accuracy of transfer learned burn depth classifiers. We test our hypothesis on real data from porcine subjects. We show improvements in the accuracy of burn depth classification -- from ~88% to ~94% -- once modified according to our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源