论文标题
AGN风中的灰尘动态:多波长AGN变异性的新机制
Dust Dynamics in AGN Winds: A New Mechanism For Multiwavelength AGN Variability
论文作者
论文摘要
活跃银河核(AGN)中的部分灰尘遮挡已被提出是某些AGN变异性情况的潜在解释。 AGN Tori中存在的尘埃混合物通过辐射压力加速,导致AGN风的发射。在这些条件下的灰尘已被证明对一类快速增长的谐振阻力不稳定性(RDI)不稳定。在这项工作中,我们介绍了辐射驱动的流出的第一个数值模拟,该辐射驱动的流出在类似于AGN风的条件下明确包括灰尘动力学。我们研究了RDI对圆环形态,AGN变异性以及辐射有效发射风能的影响。我们发现RDI迅速发展,饱和度比流出的全球时间尺度短得多,从而在盒子大小的尺度上形成了丝状结构,并具有强烈的灰尘结块和超级alfvénicnic速度分散。当沿模拟观察到的类星体积聚磁盘的模拟观察线整合时,不稳定性导致尘埃不透明度和气柱密度的波动为10-20 \%。这些波动发生了多年的时间尺度,并表现出通常观察到的AGN的红色噪声功率谱。此外,我们发现辐射有效地伴侣与尘埃混合物伴侣,发射了高度超音速的风,夹带了70-90 \%的气体,相对于预测的多个散射的动量载荷率,$ \ lyssim 3 $光子动量损失的倍数。因此,我们的发现表明,RDI在推动AGN Tori的块状性质和产生与观察结果一致的AGN变异性方面起着重要作用。
Partial dust obscuration in active galactic nuclei (AGN) has been proposed as a potential explanation for some cases of AGN variability. The dust-gas mixture present in AGN tori is accelerated by radiation pressure, leading to the launching of an AGN wind. Dust under these conditions has been shown to be unstable to a generic class of fast-growing resonant drag instabilities (RDIs). In this work, we present the first numerical simulations of radiation-driven outflows that explicitly include dust dynamics in conditions resembling AGN winds. We investigate the implications of RDIs on the torus morphology, AGN variability, and the ability of radiation to effectively launch a wind. We find that the RDIs rapidly develop, reaching saturation at times much shorter than the global timescales of the outflows, resulting in the formation of filamentary structure on box-size scales with strong dust clumping and super-Alfvénic velocity dispersions. The instabilities lead to fluctuations in dust opacity and gas column density of 10-20\% when integrated along mock observed lines-of-sight to the quasar accretion disk. These fluctuations occur over year to decade timescales and exhibit a red-noise power spectrum commonly observed for AGN. Additionally, we find that the radiation effectively couples with the dust-gas mixture, launching highly supersonic winds that entrain 70-90\% of the gas, with a factor of $\lesssim 3$ photon momentum loss relative to the predicted multiple-scattering momentum loading rate. Therefore, our findings suggest that RDIs play an important role in driving the clumpy nature of AGN tori and generating AGN variability consistent with observations.