论文标题

汇总:用关键字和解释增强双关语

ExPUNations: Augmenting Puns with Keywords and Explanations

论文作者

Sun, Jiao, Narayan-Chen, Anjali, Oraby, Shereen, Cervone, Alessandra, Chung, Tagyoung, Huang, Jing, Liu, Yang, Peng, Nanyun

论文摘要

幽默理解和产生的任务即使对于人类来说也是充满挑战和主观的,需要常识和现实的知识来掌握。双关语尤其增加了将知识与解释词语语义歧义的能力融合的挑战。在本文中,我们介绍了汇总(Expun)数据集,其中我们通过详细的众包关键字注释来增强现有的双关语数据集,这些数据表表示最独特的单词,这些单词表明文本很有趣,tun解释说明了为什么文本很有趣,且细腻的趣味性评级。这是第一个专门针对双关语的幽默数据集,具有如此广泛而细粒度的注释。基于这些注释,我们提出了两项​​任务:解释生成以帮助双关语分类和关键字条件的双关语,以挑战当前最新的自然语言理解和生成模型的理解和产生幽默的能力。我们展示了我们收集的带注释的关键字有助于在人类评估中产生更好的新颖幽默文本,并且可以利用我们的自然语言解释来提高幽默分类器的准确性和鲁棒性。

The tasks of humor understanding and generation are challenging and subjective even for humans, requiring commonsense and real-world knowledge to master. Puns, in particular, add the challenge of fusing that knowledge with the ability to interpret lexical-semantic ambiguity. In this paper, we present the ExPUNations (ExPUN) dataset, in which we augment an existing dataset of puns with detailed crowdsourced annotations of keywords denoting the most distinctive words that make the text funny, pun explanations describing why the text is funny, and fine-grained funniness ratings. This is the first humor dataset with such extensive and fine-grained annotations specifically for puns. Based on these annotations, we propose two tasks: explanation generation to aid with pun classification and keyword-conditioned pun generation, to challenge the current state-of-the-art natural language understanding and generation models' ability to understand and generate humor. We showcase that the annotated keywords we collect are helpful for generating better novel humorous texts in human evaluation, and that our natural language explanations can be leveraged to improve both the accuracy and robustness of humor classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源