论文标题
时间变化的ALIP模型和稳健的脚置控制,用于在摇摆的刚性表面上行走不足的两足机器人
Time-Varying ALIP Model and Robust Foot-Placement Control for Underactuated Bipedal Robot Walking on a Swaying Rigid Surface
论文作者
论文摘要
在动态刚性表面(DRSES)上进行两足动物行走的控制器设计,它们是在惯性框架中移动的刚性表面(例如,船舶和飞机),在很大程度上没有研究。本文介绍了一种分层控制方法,该方法可以在水平振荡的DRS上达到稳定的双足动物行动稳定。我们方法的最高层是一个实时运动计划者,它通过稳定降低的订购机器人模型来生成所需的全局行为(即质量轨迹和脚步位置的中心)。该层的一个关键新颖性是通过分析扩展基于角动量的线性反向摆(ALIP)模型从静止移动到水平移动的表面来推导还原阶模型的推导。另一个新颖性是开发离散的脚置式控制器,该控制器呈指数稳定,稳定了杂种,线性,随时间变化的ALIP模型。所提出的方法的中层是步行模式发生器,将所需的全局行为转化为机器人的全身参考轨迹,用于所有直接驱动的自由度。最低层是一个输入输出线性化控制器,它基于全阶混合,非线性机器人动力学来呈指数级跟踪这些成熟参考轨迹。在摇摆的DRS上进行的两足动物行走的平面模拟证实,所提出的框架可确保在不同的DR运动和步态类型下的步行稳定性。
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.