论文标题
稳定的市场细分理论
A Theory of Stable Market Segmentations
论文作者
论文摘要
我们认为在可能被细分的市场中的垄断卖家。一个细分市场中每个消费者的盈余取决于卖方最佳费用的价格,这取决于该细分市场中消费者的集合。我们研究消费者和卖方之间的相互作用可能导致哪些细分。我们没有将互动作为非合作游戏进行研究,而是采用了一种减少形式的方法,并引入了稳定性的概念,任何结果的细分都必须满足。稳定的分割是,对于任何替代细分,都包含一部分消费者,他们更喜欢原始分割而不是替代部分。我们的主要结果将稳定的分割表征为有效且饱和。如果没有消费者可以从价格高的细分市场转移到价格低廉的细分市场,而卖方没有卖方最佳地提高低价,则分割饱和。我们使用这种表征来建设性地表明稳定的分割始终存在。即使稳定的细分效率很高,它们也不需要最大化平均消费者盈余,并且最大化平均消费者盈余的细分不必稳定。最后,我们将稳定性的概念联系起来,从合作游戏理论中解决了解决方案概念,并表明稳定的分割满足了其中的许多概念。
We consider a monopolistic seller in a market that may be segmented. The surplus of each consumer in a segment depends on the price that the seller optimally charges, which depends on the set of consumers in the segment. We study which segmentations may result from the interaction among consumers and the seller. Instead of studying the interaction as a non-cooperative game, we take a reduced-form approach and introduce a notion of stability that any resulting segmentation must satisfy. A stable segmentation is one that, for any alternative segmentation, contains a segment of consumers that prefers the original segmentation to the alternative one. Our main result characterizes stable segmentations as efficient and saturated. A segmentation is saturated if no consumers can be shifted from a segment with a high price to a segment with a low price without the seller optimally increasing the low price. We use this characterization to constructively show that stable segmentations always exist. Even though stable segmentations are efficient, they need not maximize average consumer surplus, and segmentations that maximize average consumer surplus need not be stable. Finally, we relate our notion of stability to solution concepts from cooperative game theory and show that stable segmentations satisfy many of them.