论文标题
3D CFT中保守电流的三分函数:任意自旋的一般形式主义
Three-point functions of conserved currents in 3D CFT: general formalism for arbitrary spins
论文作者
论文摘要
我们分析了三维保形场理论中涉及保守的骨气和效率高旋转电流的三点函数的一般结构。使用保质对称和保护方程的约束,我们使用计算形式主义分析$ \ langle j^{} _ {s_ {1}} j'_ {s_ {s_ {2}} j'_ {s_ {s_ {s_ {3}} ______________________ $ j'_ {s_ {2}} $和$ j''_ {s_ {3}} $是带有旋转$ s_ {1} $,$ s_ {2} $和$ s_ {2} $和$ s_ {3} $的保守电流(整数或半键)。对于任何选择的旋转,计算都是完全自动化的,并且仅受计算机功率的限制。我们发现,相关函数通常是固定的,最多可达两个独立的偶数结构,而一个奇怪的结构,均受一组三角形不等式。我们还分析了涉及较高旋转电流以及基本标量和纺丝的三点函数的结构。
We analyse the general structure of the three-point functions involving conserved bosonic and fermionic higher-spin currents in three-dimensional conformal field theory. Using the constraints of conformal symmetry and conservation equations, we use a computational formalism to analyse the general structure of $\langle J^{}_{s_{1}} J'_{s_{2}} J''_{s_{3}} \rangle$, where $J^{}_{s_{1}}$, $J'_{s_{2}}$ and $J''_{s_{3}}$ are conserved currents with spins $s_{1}$, $s_{2}$ and $s_{3}$ respectively (integer or half-integer). The calculations are completely automated for any chosen spins and are limited only by computer power. We find that the correlation function is in general fixed up to two independent even structures, and one odd structure, subject to a set of triangle inequalities. We also analyse the structure of three-point functions involving higher-spin currents and fundamental scalars and spinors.