论文标题
自然图像贴片的有效表示
Efficient Representation of Natural Image Patches
论文作者
论文摘要
利用基于最低限度但实际的假设的抽象信息处理模型,我们研究了如何实现早期视觉系统的两个最终目标:有效的信息传输和准确的传感器概率分布模型。我们证明,对信息传输的优化不能保证一般的最佳概率分配建模。我们使用两像素(2D)系统和图像贴片说明,可以通过非线性人口代码实现有效表示,该非线性人口代码由两种类型的生物学上合理的损耗函数驱动,这些损失函数仅取决于输出。在无监督的学习之后,我们的抽象信息处理模型与生物系统具有显着相似之处,尽管没有模仿许多真实神经元的特征,例如尖峰活动。与当代深度学习模型的初步比较表明,我们的模型具有显着的效率优势。我们的模型提供了对早期视觉系统计算理论的新见解,以及一种潜在的新方法来提高深度学习模型的效率。
Utilizing an abstract information processing model based on minimal yet realistic assumptions inspired by biological systems, we study how to achieve the early visual system's two ultimate objectives: efficient information transmission and accurate sensor probability distribution modeling. We prove that optimizing for information transmission does not guarantee optimal probability distribution modeling in general. We illustrate, using a two-pixel (2D) system and image patches, that an efficient representation can be realized through a nonlinear population code driven by two types of biologically plausible loss functions that depend solely on output. After unsupervised learning, our abstract information processing model bears remarkable resemblances to biological systems, despite not mimicking many features of real neurons, such as spiking activity. A preliminary comparison with a contemporary deep learning model suggests that our model offers a significant efficiency advantage. Our model provides novel insights into the computational theory of early visual systems as well as a potential new approach to enhance the efficiency of deep learning models.