论文标题

SC-WLS:朝向可解释的前馈摄像机重新定位

SC-wLS: Towards Interpretable Feed-forward Camera Re-localization

论文作者

Wu, Xin, Zhao, Hao, Li, Shunkai, Cao, Yingdian, Zha, Hongbin

论文摘要

视觉重新定位旨在在已知的环境中恢复相机姿势,这对于诸如机器人技术或增强现实之类的应用至关重要。前馈绝对相机构成回归方法直接输出网络构成,但精度较低。同时,基于场景坐标的方法是准确的,但需要迭代的RANSAC后处理,这给有效的端到端培训和推理带来了挑战。为了两全其美,我们提出了一种称为sc-wls的馈送方法,该方法利用了所有场景坐标估计的加权最小二乘构成构成回归。这种可区分的公式利用了对2D-3D对应关系施加的权重网络,并且只需要姿势监督。定性结果证明了学习权重的解释性。与以前的前馈相比,对7SCENES和剑桥数据集的评估显示出明显的促进性能。此外,我们的SC-WLS方法启用了一个新的功能:体重网络上的自我监督测试时间改编。代码和模型公开可用。

Visual re-localization aims to recover camera poses in a known environment, which is vital for applications like robotics or augmented reality. Feed-forward absolute camera pose regression methods directly output poses by a network, but suffer from low accuracy. Meanwhile, scene coordinate based methods are accurate, but need iterative RANSAC post-processing, which brings challenges to efficient end-to-end training and inference. In order to have the best of both worlds, we propose a feed-forward method termed SC-wLS that exploits all scene coordinate estimates for weighted least squares pose regression. This differentiable formulation exploits a weight network imposed on 2D-3D correspondences, and requires pose supervision only. Qualitative results demonstrate the interpretability of learned weights. Evaluations on 7Scenes and Cambridge datasets show significantly promoted performance when compared with former feed-forward counterparts. Moreover, our SC-wLS method enables a new capability: self-supervised test-time adaptation on the weight network. Codes and models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源