论文标题

量子电路,用于测量运营商的广义期望值及其在非富有绕组数字上的应用

Quantum circuit for measuring an operator's generalized expectation values and its applications to non-Hermitian winding numbers

论文作者

Huang, Ze-Hao, He, Peng, Lang, Li-Jun, Zhu, Shi-Liang

论文摘要

我们提出了一个基于掉期测试的通用量子电路,用于测量数量$ \langleψ_1| A |关于两个量子状态$ |ψ_{1,2} \ rangle $,任意运算符$ a $的ψ_2\ rangle $。该数量在许多物理学领域经常遇到,我们将其称为常规期望的普遍性期望。我们将电路应用于非炎热物理学领域,以相对于给定的非铁官汉密尔顿人的左右特征态的广义期望。为了有效地将左右特征态作为通用电路的输入,我们还通过在复杂平面中有效旋转汉密尔顿对$(H,-H^\ Dagger)$来开发量子电路。作为应用,我们通过测量分别在周期性和开放边界条件(PBCS和OBC)下测量Bloch和非Bloch旋转纹​​理以及相应的绕组数来证明这些电路在原型的Su-Schrieffer-Heeger模型中具有非偏置跳跃的原型Su-Schrieffer-Heeger模型。数值模拟表明,可以很好地捕获这些缠绕数量的非热旋转纹理,并且PBCS和OBC之间的独特拓扑相变为明确的表征。我们可能会预期,其他非拓扑拓扑剂,包括非热旋转纹理,例如非官员Chern数字,甚至在其他物理学分支中的显着广泛期望也将由我们的一般电路来衡量,从而提供了不同的观点,从而提供了不同的观点,可以研究非热门物质以及其他物理学以及其他物理学的新颖性能。

We propose a general quantum circuit based on the swap test for measuring the quantity $\langle ψ_1 | A | ψ_2 \rangle$ of an arbitrary operator $A$ with respect to two quantum states $|ψ_{1,2}\rangle$. This quantity is frequently encountered in many fields of physics, and we dub it the generalized expectation as a two-state generalization of the conventional expectation. We apply the circuit, in the field of non-Hermitian physics, to the measurement of generalized expectations with respect to left and right eigenstates of a given non-Hermitian Hamiltonian. To efficiently prepare the left and right eigenstates as the input to the general circuit, we also develop a quantum circuit via effectively rotating the Hamiltonian pair $(H,-H^\dagger)$ in the complex plane. As applications, we demonstrate the validity of these circuits in the prototypical Su-Schrieffer-Heeger model with nonreciprocal hopping by measuring the Bloch and non-Bloch spin textures and the corresponding winding numbers under periodic and open boundary conditions (PBCs and OBCs), respectively. The numerical simulation shows that non-Hermitian spin textures building up these winding numbers can be well captured with high fidelity, and the distinct topological phase transitions between PBCs and OBCs are clearly characterized. We may expect that other non-Hermitian topological invariants composed of non-Hermitian spin textures, such as non-Hermitian Chern numbers, and even significant generalized expectations in other branches of physics would also be measured by our general circuit, providing a different perspective to study novel properties in non-Hermitian as well as other physics realized in qubit systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源