论文标题

联合刚性运动校正和稀疏视图CT通过自我校准神经场

Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating Neural Field

论文作者

Wu, Qing, Li, Xin, Wei, Hongjiang, Yu, Jingyi, Zhang, Yuyao

论文摘要

神经辐射场(NERF)在稀疏视图计算机断层扫描(SVCT)重建任务中广泛受到关注,这是一个自我监督的深度学习框架。基于NERF的SVCT方法表示所需的CT图像是空间坐标的连续函数,并训练多层感知器(MLP)通过最大程度地减少SV Sinogram上的损失来学习该功能。受益于NERF提供的连续表示,可以重建高质量的CT图像。但是,现有的基于NERF的SVCT方法严格假设CT采集过程中没有完全相对运动,因为它们需要\ textIt {recucate}投影构成对扫描SV Sinogram的X射线进行建模。因此,这些方法因运动而遭受了真正的SVCT成像的严重性能下降。在这项工作中,我们提出了一个自我校准的神经场,以从刚性运动腐败的SV Sinogram中恢复无伪影图像,而无需使用任何外部数据。具体而言,我们将刚性运动引起的不准确投影姿势作为可训练的变量,然后共同优化这些姿势变量和MLP。我们在公共CT图像数据集上进行数值实验。结果表明,对于具有四个不同级别的刚性运动级别的SVCT重建任务,我们的模型显着优于两种代表性NERF的方法。

Neural Radiance Field (NeRF) has widely received attention in Sparse-View Computed Tomography (SVCT) reconstruction tasks as a self-supervised deep learning framework. NeRF-based SVCT methods represent the desired CT image as a continuous function of spatial coordinates and train a Multi-Layer Perceptron (MLP) to learn the function by minimizing loss on the SV sinogram. Benefiting from the continuous representation provided by NeRF, the high-quality CT image can be reconstructed. However, existing NeRF-based SVCT methods strictly suppose there is completely no relative motion during the CT acquisition because they require \textit{accurate} projection poses to model the X-rays that scan the SV sinogram. Therefore, these methods suffer from severe performance drops for real SVCT imaging with motion. In this work, we propose a self-calibrating neural field to recover the artifacts-free image from the rigid motion-corrupted SV sinogram without using any external data. Specifically, we parametrize the inaccurate projection poses caused by rigid motion as trainable variables and then jointly optimize these pose variables and the MLP. We conduct numerical experiments on a public CT image dataset. The results indicate our model significantly outperforms two representative NeRF-based methods for SVCT reconstruction tasks with four different levels of rigid motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源