论文标题
部分可观测时空混沌系统的无模型预测
The observation of quantum fluctuations in a kagome Heisenberg antiferromagnet
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The search for the experimental evidence of quantum spin liquid (QSL) states is critical but extremely challenging, as the quenched interaction randomness introduced by structural imperfection is usually inevitable in real materials. YCu$_3$(OH)$_{6.5}$Br$_{2.5}$ (YCOB) is a spin-1/2 kagome Heisenberg antiferromagnet (KHA) with strong coupling of $\langle J_1\rangle\sim$ 51 K but without conventional magnetic freezing down to 50 mK $\sim$ 0.001$\langle J_1\rangle$. Here, we report a Br nuclear magnetic resonance (NMR) study of the local spin susceptibility and dynamics on the single crystal of YCOB. The temperature dependence of NMR main-line shifts and broadening can be well understood within the frame of the KHA model with randomly distributed hexagons of alternate exchanges, compatible with the formation of a randomness-induced QSL state at low temperatures. The in-plane spin fluctuations as measured by the spin-lattice relaxation rates ($1/T_1$) exhibit a weak temperature dependence down to $T$ $\sim$ 0.03$\langle J_1\rangle$. Our results demonstrate that the majority of spins remain highly fluctuating at low temperatures despite the quenched disorder in YCOB.