论文标题
部分可观测时空混沌系统的无模型预测
Stability and Regularity the MGT-Fourier Model with Fractional Coupling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work, we study the stability and regularity of the system formed by the third-order vibration equation in Moore-Gilson-Thompson time coupled with the classical heat equation with Fourier's law. We consider fractional couplings. He the fractional coupling is given by: $ηA^ϕθ, αηA^ϕu_{tt}$ and $ηA^ϕu_t$, where the operator $A^ϕ$ is self-adjoint and strictly positive in a complex Hilbert space $H$ and the parameter $ϕ$ can vary between $0$ and $1$. When $ϕ=1$ we have the MGT-Fourier physical model, previously investigated, see; 2013\cite{ABMvFJRSV2013} and 2022\cite{DellOroPata2022}, in these works the authors respectively showed that the semigroup $S(t) = e^{t\mathbb{B}}$ associated with the MGT-Fourier model are exponentially stable and analytical. The model abstract of this research is given by: \eqref{Eq1.1}--\eqref{Eq1.3}, we show directly that the semigroup $S(t)$ is exponentially stable for $ϕ\in [0,1]$, we also show that for $ϕ=1$, $S(t)$ is analytic and study of the Gevrey classes of $S(t)$ and we show that for $ϕ\in (\frac{1}{2}, 1)$ there are two families of Gevrey classes: $s_1>2$ when $ϕ\in(1/2,2/3]$ and $s_2>\fracϕ{2ϕ-1}$ when $ϕ\in[2/3,1)$, in the last part of our investigation using spectral analysis we tackled the study of the non-analyticity and lack of Gevrey classes of $S(t)$ when $ϕ\in[0,1/2]$. For the study of the existence, stability, and regularity, semigroup theory is used together with the techniques of the frequency domain, multipliers, and spectral analysis of system, using proprety of the fractional operator $A^ϕ$ for $ϕ\in[0,1]$.