论文标题
部分可观测时空混沌系统的无模型预测
Joint Detections of Frequency and Direction of Arrival in Wideband Based on Programmable Metasurface
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose to achieve joint detections of frequency and direction of arrival in wideband using single sensor based on an active metasurface with programmable transmission states of pass and stop. By integrating two PIN diodes with the opposite directions into the proposed single-layer and ultrathin meta-atom, the transmission performance with 10 dB difference between the pass and stop states is realized in the bandwidth from 5.9 GHz to 8.8 GHz using field-circuit co-simulations. Accordingly, random receiving patterns are generated by controlling the programmable metasurface composed of the switchable meta-atoms. Afterwards, the frequency and direction information of sources located in the far field are detected using the modified algorithm of estimating signal parameters via rotational invariance techniques (ESPRIT) and the compressive sensing method, respectively. A sample of the programmable metasurface is fabricated and the voltage control system is built up correspondingly. To entirely verify the validity of the proposed method, we conduct three kinds of experiments with one single source, double sources with different frequencies, and double sources with the same frequency, respectively. In all cases, the source information of frequency and direction has been detected preciously in measurements in the frequency band from 6.2 GHz to 8.8 GHz.