论文标题
$ P $ -Dirichlet问题的Crouzeix-Raviart近似的错误分析
Error analysis for a Crouzeix-Raviart approximation of the $p$-Dirichlet problem
论文作者
论文摘要
在本文中,我们检查了具有$(p,δ)$ - 结构的非线性部分微分方程的crouzeix-raviart近似值,用于某些$ p \ in(1,\ infty)$和$δ\ ge 0 $。我们建立了先验误差估计值,该估计对于所有$ p \ in(1,\ infty)$和$δ\ ge 0 $,Medius错误估计值,即最佳评估结果,以及Primal-Dual a后验错误估计,这既可靠又有效。理论发现由数值实验支持。
In the present paper, we examine a Crouzeix-Raviart approximation for non-linear partial differential equations having a $(p,δ)$-structure for some $p\in (1,\infty)$ and $δ\ge 0$. We establish a priori error estimates, which are optimal for all $p\in (1,\infty)$ and $δ\ge 0$, medius error estimates, i.e., best-approximation results, and a primal-dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.