论文标题
HCL:通过层次对比度学习改进图表
HCL: Improving Graph Representation with Hierarchical Contrastive Learning
论文作者
论文摘要
对比学习已成为图表表示学习的强大工具。但是,大多数对比度学习方法都学习具有固定粗粒量表的图形的特征,这可能低估了本地或全球信息。为了捕获更分层和更丰富的表示,我们提出了一种新颖的分层对比学习(HCL)框架,该框架以层次的方式明确学习图表表示。具体而言,HCL包括两个关键组成部分:一种新型的自适应学习池(L2POOL)方法,用于构建更合理的多尺度图形拓扑,以实现更全面的对比目标,这是一种新型的多渠道伪式 - siamese网络,以进一步促进在每个尺度内对共同信息进行更富有表现力的学习。全面的实验结果表明,HCL在涉及节点分类,节点聚类和图形分类的12个数据集上实现了竞争性能。此外,学习表示的可视化表明,HCL成功捕获了图形的有意义的特征。
Contrastive learning has emerged as a powerful tool for graph representation learning. However, most contrastive learning methods learn features of graphs with fixed coarse-grained scale, which might underestimate either local or global information. To capture more hierarchical and richer representation, we propose a novel Hierarchical Contrastive Learning (HCL) framework that explicitly learns graph representation in a hierarchical manner. Specifically, HCL includes two key components: a novel adaptive Learning to Pool (L2Pool) method to construct more reasonable multi-scale graph topology for more comprehensive contrastive objective, a novel multi-channel pseudo-siamese network to further enable more expressive learning of mutual information within each scale. Comprehensive experimental results show HCL achieves competitive performance on 12 datasets involving node classification, node clustering and graph classification. In addition, the visualization of learned representation reveals that HCL successfully captures meaningful characteristics of graphs.