论文标题
MIMO准静态瑞利褪色通道中大量随机进入的能源效率,具有有限的区块
Energy Efficiency of Massive Random Access in MIMO Quasi-Static Rayleigh Fading Channels with Finite Blocklength
论文作者
论文摘要
本文考虑了MIMO准静态雷利褪色通道中的大规模随机访问问题。具体来说,我们在每个活跃用户的最小能量范围内得出了可实现的性能和匡威界限,以在每个用户的错误(PUPE)约束概率下,具有块长度$ n $和POWER $ p $的$ J $位,在有和没有\ emph {a a先验{a先验{a a a a先验{a a a a a a priori}的note nate nate state noute信息的情况下,在接收者(CSIR和csir and csir and csi and cansir)中。对于No-CSI,我们考虑有或不知道有效用户的数字$ k_a $的设置。可实现的界限依赖于``好的地区''的设计。数值评估表明,在CSIR案例中,可实现性和匡威范围之间的差距小于$ 2.5 $ dB,而在大多数考虑的政权中,在NOCI案例中,差距小于$ 4 $ dB。当已知$ k_a $的分布时,有和不知道$ k_a $的案例之间的性能差距很小。例如,在具有区块长度$ n = 1000 $的设置中,有效载荷$ j = 100 $,错误要求$ε= 0.001 $,$ l = 128 $接收天线,与已知$ k_a $相比,$ k_a $,$ k_a $ $ k_a $是未知的,$ k_a \ sim $ k_a \ sim \ sim \ sim $ nes $ n.b in 0.4}(k_a $ n. 0.4)相反的一面和可实现的$ 1.1 $ dB。在CSIR情况下,光谱效率与$ L $的差异性增长,而随着NOCI的增长率降低。此外,我们研究了试验辅助方案的性能,这是次优的,尤其是当$ k_a $很大时。在非扰动结果的基础上,当所有用户都处于活动状态并且$ j =θ(1)$的基础上,我们会获得以下法律:当$ l =θ\ left(n^2 \右)$和$ p =θ\ left(\ frac {1} {1} {n^2} {n^2} \ right)$ yno n nono-cal no-calcalcal^o^o^o^o^o^oseria在带有CSIR的轻度条件下,仅当$ \ frac {nl \ ln kp} {k} =ω\ left(1 \右)$时,就满足了Pupe的要求。
This paper considers the massive random access problem in MIMO quasi-static Rayleigh fading channels. Specifically, we derive achievability and converse bounds on the minimum energy-per-bit required for each active user to transmit $J$ bits with blocklength $n$ and power $P$ under a per-user probability of error (PUPE) constraint, in the cases with and without \emph{a priori} channel state information at the receiver (CSIR and no-CSI). In the case of no-CSI, we consider both the settings with and without knowing the number $K_a$ of active users. The achievability bounds rely on the design of the ``good region''. Numerical evaluation shows the gap between achievability and converse bounds is less than $2.5$ dB in the CSIR case and less than $4$ dB in the no-CSI case in most considered regimes. When the distribution of $K_a$ is known, the performance gap between the cases with and without knowing the value of $K_a$ is small. For example, in the setup with blocklength $n=1000$, payload $J=100$, error requirement $ε=0.001$, and $L=128$ receive antennas, compared to the case with known $K_a$, the extra required energy-per-bit when $K_a$ is unknown and distributed as $K_a\sim\text{Binom}(K,0.4)$ is less than $0.3$ dB on the converse side and $1.1$ dB on the achievability side. The spectral efficiency grows approximately linearly with $L$ in the CSIR case, whereas the growth rate decreases with no-CSI. Moreover, we study the performance of a pilot-assisted scheme, which is suboptimal especially when $K_a$ is large. Building on non-asymptotic results, when all users are active and $J=Θ(1)$, we obtain scaling laws as follows: when $L=Θ\left(n^2\right)$ and $P=Θ\left(\frac{1}{n^2}\right)$, one can reliably serve $K=\mathcal{O}(n^2)$ users with no-CSI; under mild conditions with CSIR, the PUPE requirement is satisfied if and only if $\frac{nL\ln KP}{K}=Ω\left(1\right)$.