论文标题

通过Riemannian优化学习图形因子模型

Learning Graphical Factor Models with Riemannian Optimization

论文作者

Hippert-Ferrer, Alexandre, Bouchard, Florent, Mian, Ammar, Vayer, Titouan, Breloy, Arnaud

论文摘要

图形模型和因子分析是多元统计中完善的工具。尽管这些模型既可以与协方差和精确矩阵展示的结构相关,但它们通常不会在图形学习过程中共同利用。因此,本文通过提出一个在协方差矩阵上的低级结构约束下,提出一个灵活的算法框架来解决此问题。该问题表示为对椭圆分布的最大似然估计(高斯图形模型对可能是重尾分布的概括),其中可选地将协方差矩阵限制为构造为低级别加上对角线(低级数因子模型)。然后,通过Riemannian优化解决了这类问题的解决,我们利用固定级别的阳性矩阵和阳性半明确矩阵的几何形状,这些固定等级非常适合椭圆模型。对现实世界数据集的数值实验说明了提出方法的有效性。

Graphical models and factor analysis are well-established tools in multivariate statistics. While these models can be both linked to structures exhibited by covariance and precision matrices, they are generally not jointly leveraged within graph learning processes. This paper therefore addresses this issue by proposing a flexible algorithmic framework for graph learning under low-rank structural constraints on the covariance matrix. The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution (a generalization of Gaussian graphical models to possibly heavy-tailed distributions), where the covariance matrix is optionally constrained to be structured as low-rank plus diagonal (low-rank factor model). The resolution of this class of problems is then tackled with Riemannian optimization, where we leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models. Numerical experiments on real-world data sets illustrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源