论文标题
GLCC:图形群集的一般框架
GLCC: A General Framework for Graph-Level Clustering
论文作者
论文摘要
本文研究了图形聚类的问题,这是一项新颖而又具有挑战性的任务。在生物信息学中的蛋白质聚类和基因组分析等各种现实世界中,此问题至关重要。近年来,深度聚类的成功以及图神经网络(GNNS)的成功。但是,现有的方法集中在一个给定图表之间的节点之间的聚类,而在多个图表上探索聚类的同时仍未探索聚类。在本文中,我们提出了一个名为图形对比度聚类(GLCC)的一般图形级聚类框架,给定多个图。具体而言,GLCC首先构建了自适应亲和力图,以探索实例 - 和集群级的对比学习(CL)。实例级别的CL利用基于图形的基于Laplacian的对比损失来学习群集友好的表示,而群集级CL捕获了包含每个样本的邻居信息的区分群集表示。此外,我们利用邻居感知的伪标记来奖励表示表示学习的优化。可以对这两个步骤进行培训,以互相协作和受益。一系列知名数据集的实验证明了我们提出的GLCC优于竞争基准。
This paper studies the problem of graph-level clustering, which is a novel yet challenging task. This problem is critical in a variety of real-world applications such as protein clustering and genome analysis in bioinformatics. Recent years have witnessed the success of deep clustering coupled with graph neural networks (GNNs). However, existing methods focus on clustering among nodes given a single graph, while exploring clustering on multiple graphs is still under-explored. In this paper, we propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC) given multiple graphs. Specifically, GLCC first constructs an adaptive affinity graph to explore instance- and cluster-level contrastive learning (CL). Instance-level CL leverages graph Laplacian based contrastive loss to learn clustering-friendly representations while cluster-level CL captures discriminative cluster representations incorporating neighbor information of each sample. Moreover, we utilize neighbor-aware pseudo-labels to reward the optimization of representation learning. The two steps can be alternatively trained to collaborate and benefit each other. Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.