论文标题
基于语义和RGB自我视图的对象目标导航
Object Goal Navigation Based on Semantics and RGB Ego View
论文作者
论文摘要
本文介绍了一种体系结构和方法,以赋予服务机器人的能力,以通过RGB自我视图来浏览具有语义决策的室内环境。此方法利用机器人的驱动能力以及以语义形式表示的场景,对象及其关系的知识。机器人基于地质图 - 几何图和语义图的关系组合进行导航。机器人的目标是在没有导航图的未知环境中找到一个对象,只有以Egentric的RGB相机感知。该方法在模拟环境和现实生活环境中进行了测试。在平均完成时间方面,发现了提出的方法在游戏化评估中的表现优于人类用户。
This paper presents an architecture and methodology to empower a service robot to navigate an indoor environment with semantic decision making, given RGB ego view. This method leverages the knowledge of robot's actuation capability and that of scenes, objects and their relations -- represented in a semantic form. The robot navigates based on GeoSem map - a relational combination of geometric and semantic map. The goal given to the robot is to find an object in a unknown environment with no navigational map and only egocentric RGB camera perception. The approach is tested both on a simulation environment and real life indoor settings. The presented approach was found to outperform human users in gamified evaluations with respect to average completion time.