论文标题
图神经网络在宇宙学中的新应用
New applications of Graph Neural Networks in Cosmology
论文作者
论文摘要
即将进行的宇宙学调查将提供前所未有的数据,这将需要创新的统计方法来最大化科学利用。基于丰度,宇宙示踪剂的两点和高阶统计的标准宇宙学分析已被广泛用于研究宇宙网络和大规模结构的特性。但是,这些统计数据只能利用可用的整个信息内容的子集。因此,我们的目标是基于机器学习实施新的数据分析技术,通过直接利用星系和星系簇的空间坐标和其他观察到的特性来通过正向建模提取宇宙学信息。具体而言,我们以图形的形式研究了大规模结构数据的新表示。这种数据格式可以直接馈送到图形神经网络,这是最近提出的一类监督的深度学习算法。我们测试了不同宇宙学中暗物质光环目录的方法,找到了令人鼓舞的结果。特别是,该方法可以通过二进制分类($ 99 \% - $准确性)和多级分类($ 97 \% - $准确性)来区分具有高精度的不同暗能量模型。此外,它以高精度为基础提供了$ W_0 $的值的约束。
Upcoming cosmological surveys will provide unprecedented amount of data, which will require innovative statistical methods to maximize the scientific exploitation. Standard cosmological analyses based on abundances, two-point and higher-order statistics of cosmic tracers have been widely used to investigate the properties of the cosmic web and Large Scale Structure. However, these statistics can only exploit a subset of the entire information content available. Our goal is thus to implement new data analysis techniques based on machine learning to extract cosmological information through forward modelling, by directly exploiting the spatial coordinates and other observed properties of galaxies and galaxy clusters. Specifically, we investigated a new representation of large-scale structure data in the form of graphs. This data format can be directly fed to Graph Neural Networks, a recently proposed class of supervised Deep Learning algorithms. We tested the method on dark matter halo catalogues in different cosmologies, finding promising results. In particular, the method can discriminate among different dark energy models with high accuracy, through both binary classification ($99\%-$accuracy) and multi-class classification ($97\%-$accuracy). Moreover, it provides constraints on the value of $w_0$, through regression, with high precision.