论文标题

基于测量的量子计算作为Tangram拼图

Measurement-based Quantum Computation as a Tangram Puzzle

论文作者

Patil, Ashlesha, Jacobson, Yosef P., Towsley, Don, Guha, Saikat

论文摘要

2001年提出的基于测量的量子计算(MBQC)是一种量子计算模型,该模型通过在纠缠群集状态上执行一系列自适应单量测量来实现量子计算。我们的项目旨在将MBQC引入广泛的受众群体,从高中生到量子计算研究人员,通过带有修改后的规则的Tangram拼图来计算研究人员。可以理解规则,而没有任何量子计算的背景。为播放器提供了一个量子电路,该量子电路使用通用门集的门显示,玩家必须使用Polyominos正确地映射到游戏板。多元元或“拼图块”是我们游戏的基础。它们由方形瓷砖组成,将边缘到边缘连接在一起,形成不同的彩色形状。每个瓷砖代表单量测量的基础,由其颜色区分。 Polyominos放在一个方格弹奏板上,这表示集群状态。我们表明,将量子电路映射到MBQC等同于布置一组聚球体,每个聚球体对应于游戏板上电路中的一个栅极,但要遵守某些规则,涉及旋转和变形的多粒子。我们以简单的方式说明规则,而无需参考量子计算。玩家必须将polyominos放在符合规则的比赛板上。任何正确的解决方案都会创建MBQC中量子电路的有效实现。得分较高的正确解决方案填充了板上的较小空间,从而导致电路中较低的嵌入MBQC(一个开放且具有挑战性的研究问题)。

Measurement-Based Quantum Computing (MBQC), proposed in 2001 is a model of quantum computing that achieves quantum computation by performing a series of adaptive single-qubit measurements on an entangled cluster state. Our project is aimed at introducing MBQC to a wide audience ranging from high school students to quantum computing researchers through a Tangram puzzle with a modified set of rules, played on an applet. The rules can be understood without any background in quantum computing. The player is provided a quantum circuit, shown using gates from a universal gate set, which the player must map correctly to a playing board using polyominos. Polyominos or 'puzzle blocks' are the building blocks of our game. They consist of square tiles joined edge-to-edge to form different colored shapes. Each tile represents a single-qubit measurement basis, differentiated by its color. Polyominos rest on a square-grid playing board, which signifies a cluster state. We show that mapping a quantum circuit to MBQC is equivalent to arranging a set of polyominos, each corresponding to a gate in the circuit on the playing board, subject to certain rules, which involve rotating and deforming polyominos. We state the rules in simple terms with no reference to quantum computing. The player has to place polyominos on the playing board conforming to the rules. Any correct solution creates a valid realization of the quantum circuit in MBQC. A higher-scoring correct solution fills up less space on the board, resulting in a lower-overhead embedding of the circuit in MBQC, an open and challenging research problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源