论文标题

使用人工神经网络的量子启发进行基态近似

Quantum-Inspired Tempering for Ground State Approximation using Artificial Neural Networks

论文作者

Albash, Tameem, Smith, Conor, Campbell, Quinn, Baczewski, Andrew D.

论文摘要

大量工作表明,参数化的人工神经网络(ANN)可以有效地描述许多有趣的量子多体汉密尔顿人的基态。但是,用于更新或训练ANN参数的标准变分算法可能会被困在本地最小值中,尤其是对于沮丧的系统,即使表示形式足够表达。我们提出了一种平行的回火方法,可促进从这种局部最小值中逃脱。该方法涉及独立训练多个ANN,每个模拟由具有不同“驱动器”强度的哈密顿量支配,类似于量子并行回火,并且将更新步骤纳入训练中,以允许交换相邻的ANN配置。我们研究了两类汉密尔顿人的实例,以使用受限的玻尔兹曼机器作为参数化的ANN来证明我们方法的实用性。首先是基于置换不变的哈密顿量,其景观通过将其越来越多地绘制到错误的局部最低限度来阻碍标准培训算法。第二个实例是在矩形中排列的四个氢原子,这是使用高斯基函数离散的第二个量化电子结构的实例。我们以最少的基础研究了此问题,该问题表现出虚假的最小值,尽管该问题的尺寸很小,但仍可以捕获标准的变分算法。我们表明,使用量子并行回火增加训练对于找到对这些问题实例的基态的良好近似值很有用。

A large body of work has demonstrated that parameterized artificial neural networks (ANNs) can efficiently describe ground states of numerous interesting quantum many-body Hamiltonians. However, the standard variational algorithms used to update or train the ANN parameters can get trapped in local minima, especially for frustrated systems and even if the representation is sufficiently expressive. We propose a parallel tempering method that facilitates escape from such local minima. This methods involves training multiple ANNs independently, with each simulation governed by a Hamiltonian with a different "driver" strength, in analogy to quantum parallel tempering, and it incorporates an update step into the training that allows for the exchange of neighboring ANN configurations. We study instances from two classes of Hamiltonians to demonstrate the utility of our approach using Restricted Boltzmann Machines as our parameterized ANN. The first instance is based on a permutation-invariant Hamiltonian whose landscape stymies the standard training algorithm by drawing it increasingly to a false local minimum. The second instance is four hydrogen atoms arranged in a rectangle, which is an instance of the second quantized electronic structure Hamiltonian discretized using Gaussian basis functions. We study this problem in a minimal basis set, which exhibits false minima that can trap the standard variational algorithm despite the problem's small size. We show that augmenting the training with quantum parallel tempering becomes useful to finding good approximations to the ground states of these problem instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源