论文标题

深度有条件转化模型用于生存分析

Deep conditional transformation models for survival analysis

论文作者

Campanella, Gabriele, Kook, Lucas, Häggström, Ida, Hothorn, Torsten, Fuchs, Thomas J.

论文摘要

每一个越来越多的临床试验都具有事件时间结果和记录非壮大的患者数据,例如磁共振成像或以电子健康记录形式的文本数据。最近,已经提出了一些基于神经网络的解决方案,其中一些是二进制分类器。充分利用生存时间和审查状态的参数,无分配方法并没有得到太多关注。我们提出了深层条件转化模型(DCTM),以作为参数和半参数生存分析的统一方法。 DCTM允许对表格和非尾巴数据进行非线性和非育种危害的规范,并扩展到所有类型的检查和截断。在实际和半合成数据上,我们表明DCTM与最先进的DL生存分析方法竞争。

An every increasing number of clinical trials features a time-to-event outcome and records non-tabular patient data, such as magnetic resonance imaging or text data in the form of electronic health records. Recently, several neural-network based solutions have been proposed, some of which are binary classifiers. Parametric, distribution-free approaches which make full use of survival time and censoring status have not received much attention. We present deep conditional transformation models (DCTMs) for survival outcomes as a unifying approach to parametric and semiparametric survival analysis. DCTMs allow the specification of non-linear and non-proportional hazards for both tabular and non-tabular data and extend to all types of censoring and truncation. On real and semi-synthetic data, we show that DCTMs compete with state-of-the-art DL approaches to survival analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源