论文标题

为什么内在行星不倾斜?

Why are inner planets not inclined?

论文作者

Clarke, Andrew, Fejoz, Jacques, Guardia, Marcel

论文摘要

庞加莱(Poincaré)的工作超过一个世纪前,或者是1990年代开始的拉斯卡(Laskar)的数值模拟,它不可撤销地损害了长期以来对太阳能系统应该稳定的信念。但是,解释这种不稳定的数学机制仍然神秘。 1968年,阿诺德(Arnold)猜想了天体力学中“阿诺德扩散”的存在。我们证明了Arnold在行星空间$ 4 $体育问题以及相应的分层问题(越来越分开的情况)中的猜想,并表明这种扩散很长时间间隔导致了一些大规模的不稳定。沿着扩散轨道,两个内行星的相互倾斜接近$π/2 $,这暗示了为什么只有在不倾斜内行星时,行星系统中的边缘稳定性也可能存在。 更确切地说,考虑第二行星的归一化角动量,通过通过其半轴轴的平方根重新缩放角动量获得了归一化的角动,并通过其半轴轴的平方根和足够的质量因子(其方向和规范给出了革命的平面和第二行星的偏心率)。它是单位$ 3 $ -BALL的向量。我们表明,该球中的任何有限序列都可以通过任意精度实现,这是$ 4 $ body问题中归一化角动量的一系列值。例如,第二行星可能会从几乎水平的旋转中翻转以逆行旋转。由于证据的结果,任何有限级的世俗形式的非循环集都累积在圆形动作上,这是赫尔曼著名猜想的弱形式。

Poincaré's work more than one century ago, or Laskar's numerical simulations from the 1990's on, have irrevocably impaired the long-held belief that the Solar System should be stable. But mathematical mechanisms explaining this instability have remained mysterious. In 1968, Arnold conjectured the existence of "Arnold diffusion" in celestial mechanics. We prove Arnold's conjecture in the planetary spatial $4$-body problem as well as in the corresponding hierarchical problem (where the bodies are increasingly separated), and show that this diffusion leads, on a long time interval, to some large-scale instability. Along the diffusive orbits, the mutual inclination of the two inner planets is close to $π/2$, which hints at why even marginal stability in planetary systems may exist only when inner planets are not inclined. More precisely, consider the normalised angular momentum of the second planet, obtained by rescaling the angular momentum by the square root of its semimajor axis and by an adequate mass factor (its direction and norm give the plane of revolution and the eccentricity of the second planet). It is a vector of the unit $3$-ball. We show that any finite sequence in this ball may be realised, up to an arbitrary precision, as a sequence of values of the normalised angular momentum in the $4$-body problem. For example, the second planet may flip from prograde nearly horizontal revolutions to retrograde ones. As a consequence of the proof, the non-recurrent set of any finite-order secular normal form accumulates on circular motions -- a weak form of a celebrated conjecture of Herman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源