论文标题
Quasianalytic超级分布的Wiener Amalgam空间
Wiener amalgam spaces of quasianalytic ultradistributions
论文作者
论文摘要
我们定义了(准)分析超级分布的Wiener amalgam空间,其本地组件属于一般的翻译和调制超级分布的Banach空间,其全球组件是加权$ l^p $或加权$ \ natercal $ \ Mathcal {c} _0 $ $ space。我们通过所谓的统一统一分区提供离散的表征。最后,我们研究了复杂的插值方法,并确定了大多数这些Wiener amalgam空间的强双重。
We define Wiener amalgam spaces of (quasi)analytic ultradistributions whose local components belong to a general class of translation and modulation invariant Banach spaces of ultradistributions and their global components are either weighted $L^p$ or weighted $\mathcal{C}_0$ spaces. We provide a discrete characterisation via so called uniformly concentrated partitions of unity. Finally, we study the complex interpolation method and we identify the strong duals for most of these Wiener amalgam spaces.