论文标题

多障碍3D人姿势估计指标有利于校准分布错误的分布

Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions

论文作者

Pierzchlewicz, Paweł A., Cotton, R. James, Bashiri, Mohammad, Sinz, Fabian H.

论文摘要

由于深度歧义和阻塞,将2D姿势提升到3D是一个严重的问题。可能的姿势分布良好的分布可以使这些歧义明确,并保留下游任务的不确定性。这项研究表明,以前的尝试通过多个假设产生来解释了这些歧义,会产生错误校准的分布。我们确定错误校准可以归因于使用基于样本的指标,例如minmpjpe。在一系列模拟中,我们表明,通常这样做的最小化minmpjpe应该收敛到正确的平均预测。但是,它无法正确捕获不确定性,从而导致分布错误。为了减轻此问题,我们提出了一个精确且校准的模型,称为条件图标准化流量(CGNFS)。我们的模型的结构化使得单个CGNF可以在同一模型中估算条件和边缘密度 - 有效地解决了零发密度估计问题。我们对人类〜360万数据集进行了评估CGNF,并表明CGNF在整体minmpjpe方面提供了良好的分布估算,同时又接近最新的分布。此外,CGNF在闭合接头上的表现优于先前的方法,同时保持了良好的校准。

Due to depth ambiguities and occlusions, lifting 2D poses to 3D is a highly ill-posed problem. Well-calibrated distributions of possible poses can make these ambiguities explicit and preserve the resulting uncertainty for downstream tasks. This study shows that previous attempts, which account for these ambiguities via multiple hypotheses generation, produce miscalibrated distributions. We identify that miscalibration can be attributed to the use of sample-based metrics such as minMPJPE. In a series of simulations, we show that minimizing minMPJPE, as commonly done, should converge to the correct mean prediction. However, it fails to correctly capture the uncertainty, thus resulting in a miscalibrated distribution. To mitigate this problem, we propose an accurate and well-calibrated model called Conditional Graph Normalizing Flow (cGNFs). Our model is structured such that a single cGNF can estimate both conditional and marginal densities within the same model - effectively solving a zero-shot density estimation problem. We evaluate cGNF on the Human~3.6M dataset and show that cGNF provides a well-calibrated distribution estimate while being close to state-of-the-art in terms of overall minMPJPE. Furthermore, cGNF outperforms previous methods on occluded joints while it remains well-calibrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源