论文标题

硬性挖掘通过等距近似定理的数学合理性

Mathematical Justification of Hard Negative Mining via Isometric Approximation Theorem

论文作者

Xu, Albert, Hsieh, Jhih-Yi, Vundurthy, Bhaskar, Cohen, Eliana, Choset, Howie, Li, Lu

论文摘要

在深度度量学习中,三胞胎损失已成为一种流行的方法,可以学习许多计算机视觉和自然语言处理任务,例如面部识别,对象检测和视觉语义嵌入。困扰三重态损失的一个问题是网络崩溃,这是一种不良现象,网络将所有数据的嵌入到一个点上。研究人员主要通过使用三重态挖掘策略来解决此问题。尽管硬采矿是这些策略中最有效的,但现有的制剂缺乏强大的理论理由,因为他们的经验成功。在本文中,我们利用等距近似的数学理论,显示了用硬式挖掘所采样的三胞胎损失与优化问题之间的等效性,从而最大程度地减少了神经网络与其理想的对应功能之间的类似Hausdorff的距离。这为硬采矿的经验疗效提供了理论上的理由。此外,我们对等距近似定理的新颖应用为避免网络崩溃的将来的硬性挖掘形式提供了基础。我们的理论也可以扩展以分析其他欧几里得太空度量学习方法,例如梯子损失或对比度学习。

In deep metric learning, the Triplet Loss has emerged as a popular method to learn many computer vision and natural language processing tasks such as facial recognition, object detection, and visual-semantic embeddings. One issue that plagues the Triplet Loss is network collapse, an undesirable phenomenon where the network projects the embeddings of all data onto a single point. Researchers predominately solve this problem by using triplet mining strategies. While hard negative mining is the most effective of these strategies, existing formulations lack strong theoretical justification for their empirical success. In this paper, we utilize the mathematical theory of isometric approximation to show an equivalence between the Triplet Loss sampled by hard negative mining and an optimization problem that minimizes a Hausdorff-like distance between the neural network and its ideal counterpart function. This provides the theoretical justifications for hard negative mining's empirical efficacy. In addition, our novel application of the isometric approximation theorem provides the groundwork for future forms of hard negative mining that avoid network collapse. Our theory can also be extended to analyze other Euclidean space-based metric learning methods like Ladder Loss or Contrastive Learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源