论文标题
基于变压器的实体在知识图中打字
Transformer-based Entity Typing in Knowledge Graphs
论文作者
论文摘要
我们研究了旨在推断出合理实体类型的知识图实体键入任务。在本文中,我们提出了一种新型的基于变压器的实体键入(TET)方法,有效地编码了实体的邻居内容。更准确地说,TET由三种不同的机制组成:局部变压器,允许通过独立编码其每个邻居提供的信息来推断实体的缺失类型;将实体的所有邻居的信息汇总为一个长序列,以推理更复杂的实体类型;和上下文变压器基于邻居对邻居对之间的信息交换对类型推断的贡献整合的内容。此外,TET使用有关类型类成员资格的信息来增强实体的表示。在两个现实世界数据集上的实验证明了与最先进的TET相比,TET的出色性能。
We investigate the knowledge graph entity typing task which aims at inferring plausible entity types. In this paper, we propose a novel Transformer-based Entity Typing (TET) approach, effectively encoding the content of neighbors of an entity. More precisely, TET is composed of three different mechanisms: a local transformer allowing to infer missing types of an entity by independently encoding the information provided by each of its neighbors; a global transformer aggregating the information of all neighbors of an entity into a single long sequence to reason about more complex entity types; and a context transformer integrating neighbors content based on their contribution to the type inference through information exchange between neighbor pairs. Furthermore, TET uses information about class membership of types to semantically strengthen the representation of an entity. Experiments on two real-world datasets demonstrate the superior performance of TET compared to the state-of-the-art.