论文标题
mgtunet:一种新的结肠核实例分割和定量的UNET
MGTUNet: An new UNet for colon nuclei instance segmentation and quantification
论文作者
论文摘要
在发病率和死亡率方面,结直肠癌(CRC)是三种恶性肿瘤类型之一。组织病理学图像是诊断结肠癌的黄金标准。细胞核实例分割和分类以及核成分回归任务可以帮助分析结肠组织中肿瘤微环境。传统方法仍然无法同时处理两种类型的任务,并且预测准确性差和高应用成本。本文提出了一种基于UNET框架(称为MGTUNET)的新的UNET模型,该模型使用MISH,组归一化和转置卷积层来改善分割模型,并使用Ranger Optimizer来调整SmoothL1LOSS值。其次,它使用不同的通道来分割和分类不同类型的核,最终完成核实例分割和分类任务,以及核分量回归任务。最后,我们使用八个分割模型进行了广泛的比较实验。通过比较模型的三个评估指标和参数尺寸,MGTUNET在PQ上获得0.6254,MPQ上的0.6359在R2上获得0.6359,在R2上获得了0.8695。因此,实验表明MGTUNET现在是量化结肠癌组织病理学图像的最新方法。
Colorectal cancer (CRC) is among the top three malignant tumor types in terms of morbidity and mortality. Histopathological images are the gold standard for diagnosing colon cancer. Cellular nuclei instance segmentation and classification, and nuclear component regression tasks can aid in the analysis of the tumor microenvironment in colon tissue. Traditional methods are still unable to handle both types of tasks end-to-end at the same time, and have poor prediction accuracy and high application costs. This paper proposes a new UNet model for handling nuclei based on the UNet framework, called MGTUNet, which uses Mish, Group normalization and transposed convolution layer to improve the segmentation model, and a ranger optimizer to adjust the SmoothL1Loss values. Secondly, it uses different channels to segment and classify different types of nucleus, ultimately completing the nuclei instance segmentation and classification task, and the nuclei component regression task simultaneously. Finally, we did extensive comparison experiments using eight segmentation models. By comparing the three evaluation metrics and the parameter sizes of the models, MGTUNet obtained 0.6254 on PQ, 0.6359 on mPQ, and 0.8695 on R2. Thus, the experiments demonstrated that MGTUNet is now a state-of-the-art method for quantifying histopathological images of colon cancer.