论文标题
通过删除边缘和顶点列表同构:有限 - 树的紧密复杂性界限
List homomorphisms by deleting edges and vertices: tight complexity bounds for bounded-treewidth graphs
论文作者
论文摘要
本文的目的是调查列表同构引起的优化问题的家族,并了解如果我们将问题限制为有界树的图表,最好的算法是什么。对于固定的$ H $,优化问题LHOMVD($ H $)的输入是图形$ g $,列表$ L(V)$,其任务是找到具有最小尺寸的$ x $ thertices的$ x $,以至于$(g-x,l)$具有列表的list list andomorphism atmorphism至$ h $。我们类似地定义了Edge-Dosletion变体LHOMED($ H $)。这种表现力的问题系列包括基本上等同于基本问题的成员,例如顶点覆盖,最大切割,奇数循环横向和边缘/顶点多路切割。 对于这两个变体,我们首先表征这些图表$ h $,这些图表使问题多项式时间可解决,并表明该问题对于其他固定的$ H $都是NP-HARD。其次,作为我们的主要结果,我们确定问题为NP-HARD的每张图$ H $,是最小的常数$ C_H $,以便可以在时间$ c^t_h \ cdot n^{o(1)$在时间$ c^t_h \ cdot n^{o(1)} $中解决$ g $ w $ g $ w width $ t $的$ g $ t $的最大尺寸,是$ i(h)的最大尺寸。无与伦比的社区。对于Vertex-Deotion变体LHOMVD($ H $),我们表明,最小的常数为$ i(h)+1 $,每$ H $。 对于边缘版本而言,情况更为复杂。对于每一个$ h $,如果给出了宽度$ t $的树分解,就可以在时间$ i(h)^t \ cdot n^{o(1)} $中解决lhomed($ h $)。但是,$ h $的特定类型的分解存在表明,有图形$ h $可以更有效地解决lhomed($ h $)的求解,并且最佳可能的常数可以任意小于$ i(h)$。尽管如此,我们确定了这种最佳常数,并且(假设塞思)对每个固定的$ h $都证明了紧密的界限。
The goal of this paper is to investigate a family of optimization problems arising from list homomorphisms, and to understand what the best possible algorithms are if we restrict the problem to bounded-treewidth graphs. For a fixed $H$, the input of the optimization problem LHomVD($H$) is a graph $G$ with lists $L(v)$, and the task is to find a set $X$ of vertices having minimum size such that $(G-X,L)$ has a list homomorphism to $H$. We define analogously the edge-deletion variant LHomED($H$). This expressive family of problems includes members that are essentially equivalent to fundamental problems such as Vertex Cover, Max Cut, Odd Cycle Transversal, and Edge/Vertex Multiway Cut. For both variants, we first characterize those graphs $H$ that make the problem polynomial-time solvable and show that the problem is NP-hard for every other fixed $H$. Second, as our main result, we determine for every graph $H$ for which the problem is NP-hard, the smallest possible constant $c_H$ such that the problem can be solved in time $c^t_H\cdot n^{O(1)}$ if a tree decomposition of $G$ having width $t$ is given in the input.Let $i(H)$ be the maximum size of a set of vertices in $H$ that have pairwise incomparable neighborhoods. For the vertex-deletion variant LHomVD($H$), we show that the smallest possible constant is $i(H)+1$ for every $H$. The situation is more complex for the edge-deletion version. For every $H$, one can solve LHomED($H$) in time $i(H)^t\cdot n^{O(1)}$ if a tree decomposition of width $t$ is given. However, the existence of a specific type of decomposition of $H$ shows that there are graphs $H$ where LHomED($H$) can be solved significantly more efficiently and the best possible constant can be arbitrarily smaller than $i(H)$. Nevertheless, we determine this best possible constant and (assuming the SETH) prove tight bounds for every fixed $H$.