论文标题

高等教育中的学生支持建议系统的本科数据收集策略的框架

A Framework for Undergraduate Data Collection Strategies for Student Support Recommendation Systems in Higher Education

论文作者

Combrink, Herkulaas MvE, Marivate, Vukosi, Rosman, Benjamin

论文摘要

了解哪种学生支持策略减轻辍学并改善学生的保留是现代高等教育研究的重要组成部分。当前面临的高等教育机构最大的挑战之一是学生支持的可扩展性。部分原因是由于员工缺乏满足学生需求的原因,以及随后提供的推荐途径,以提供时空的学生支持策略。这些推荐的困难使这更加复杂,尤其是当学生经常面对行政,学术,社会和社会经济挑战的结合时。解决这个问题的可能解决方案可能是学生结果预测和在高等教育背景下应用算法推荐系统的结合。尽管在这种情况下解释算法决策的扩展已经进行了很多努力和细节,但仍然需要制定数据收集策略,因此本文的目的是概述在此上下文中针对推荐系统的数据收集框架,以减少收集偏见,了解学生的特征,并找到一种理想的方式来推断对学生旅程的最佳影响。如果确认偏见,数据稀疏性的挑战以及从学生那里收集的信息类型,它将对试图评估和评估这些系统在高等教育中的影响的尝试产生不利影响。

Understanding which student support strategies mitigate dropout and improve student retention is an important part of modern higher educational research. One of the largest challenges institutions of higher learning currently face is the scalability of student support. Part of this is due to the shortage of staff addressing the needs of students, and the subsequent referral pathways associated to provide timeous student support strategies. This is further complicated by the difficulty of these referrals, especially as students are often faced with a combination of administrative, academic, social, and socio-economic challenges. A possible solution to this problem can be a combination of student outcome predictions and applying algorithmic recommender systems within the context of higher education. While much effort and detail has gone into the expansion of explaining algorithmic decision making in this context, there is still a need to develop data collection strategies Therefore, the purpose of this paper is to outline a data collection framework specific to recommender systems within this context in order to reduce collection biases, understand student characteristics, and find an ideal way to infer optimal influences on the student journey. If confirmation biases, challenges in data sparsity and the type of information to collect from students are not addressed, it will have detrimental effects on attempts to assess and evaluate the effects of these systems within higher education.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源