论文标题
带有辅助信息的多模式推荐系统
Multi-Modal Recommendation System with Auxiliary Information
论文作者
论文摘要
通过在建模中包括用户的行为,将上下文感知的建议系统改进了经典推荐系统。对上下文感知推荐系统的研究以前仅将项目的顺序排序视为上下文信息。但是,与项目相关的辅助知识中提供了大量未开发的其他多模式信息。这项研究通过评估一个多模式推荐系统扩展了现有的研究,该系统利用了与项目相关的全面辅助知识。经验结果探索了使用data2vec从非结构化和结构化数据中提取矢量表示(嵌入)。然后,使用融合的嵌入式来训练几个最先进的变压器体系结构,以进行顺序的用户项目表示。实验结果的分析显示了预测准确性的统计学上显着提高,这证实了在上下文感知的建议系统中添加辅助信息的有效性。我们报告的长和短用户序列数据集的NDCG得分增加了4%和11%。
Context-aware recommendation systems improve upon classical recommender systems by including, in the modelling, a user's behaviour. Research into context-aware recommendation systems has previously only considered the sequential ordering of items as contextual information. However, there is a wealth of unexploited additional multi-modal information available in auxiliary knowledge related to items. This study extends the existing research by evaluating a multi-modal recommendation system that exploits the inclusion of comprehensive auxiliary knowledge related to an item. The empirical results explore extracting vector representations (embeddings) from unstructured and structured data using data2vec. The fused embeddings are then used to train several state-of-the-art transformer architectures for sequential user-item representations. The analysis of the experimental results shows a statistically significant improvement in prediction accuracy, which confirms the effectiveness of including auxiliary information in a context-aware recommendation system. We report a 4% and 11% increase in the NDCG score for long and short user sequence datasets, respectively.