论文标题
通过神经图修剪迈向准确的子图相似性计算
Towards Accurate Subgraph Similarity Computation via Neural Graph Pruning
论文作者
论文摘要
子图相似性搜索是图形搜索中的核心问题之一,它涉及目标图是否包含查询图。最近,神经方法触及了问题。但是,当前的神经方法不考虑修剪目标图,尽管在传统的子图相似性计算中,修剪至关重要。在神经方法中应用修剪的一个障碍是{修剪的离散属性}。在这项工作中,我们将图形修剪转换为节点重新标记的问题,然后将其放松为可区分的问题。基于这个想法,我们进一步设计了一个新型的神经网络,以近似于子图距离:子图编辑距离(SED)。 {特别是,我们使用神经结构构建修剪组件,并且可以优化整个模型的端到端。}在模型的设计中,我们提出了一种注意机制来利用有关查询图的信息并指导目标图的修剪。此外,我们制定了一种多头修剪策略,以便该模型可以更好地探索修剪目标图的多种方法。提出的模型在七个基准数据集中建立了新的最新结果。对模型的广泛分析表明,所提出的模型可以合理地修剪目标图以进行计算。我们的算法的实现在我们的GitHub repo:https://github.com/tufts-ml/prune4sed上发布。
Subgraph similarity search, one of the core problems in graph search, concerns whether a target graph approximately contains a query graph. The problem is recently touched by neural methods. However, current neural methods do not consider pruning the target graph, though pruning is critically important in traditional calculations of subgraph similarities. One obstacle to applying pruning in neural methods is {the discrete property of pruning}. In this work, we convert graph pruning to a problem of node relabeling and then relax it to a differentiable problem. Based on this idea, we further design a novel neural network to approximate a type of subgraph distance: the subgraph edit distance (SED). {In particular, we construct the pruning component using a neural structure, and the entire model can be optimized end-to-end.} In the design of the model, we propose an attention mechanism to leverage the information about the query graph and guide the pruning of the target graph. Moreover, we develop a multi-head pruning strategy such that the model can better explore multiple ways of pruning the target graph. The proposed model establishes new state-of-the-art results across seven benchmark datasets. Extensive analysis of the model indicates that the proposed model can reasonably prune the target graph for SED computation. The implementation of our algorithm is released at our Github repo: https://github.com/tufts-ml/Prune4SED.