论文标题

使用径向基函数神经网络对不采样的干涉图解开的相结合

The phase unwrapping of under-sampled interferograms using radial basis function neural networks

论文作者

Gourdain, Pierre-Alexandre, Bachmann, Aidan

论文摘要

干涉法可以测量无法通过记录信号相变和参考阶段之间的差异来测量系统的形状或材料密度。这种差异始终在$-π$和$π$之间,而它是获得真实测量所需的绝对阶段。旨在从$] - π,π] $中的“包装”阶段准确恢复的方法的悠久历史。但是,噪声和采样不足限制了大多数技术的有效性,并且需要高度复杂的算法来处理不完美的测量。最终,分析成功的干涉图等于模式识别,这是径向基函数神经网络真正表现出色的任务。所提出的神经网络旨在从二维干涉图中解开该相位,在这些干涉图中,依赖于溶解不足的区域的混叠和噪声水平很明显。使用基于梯度的监督学习,可以在三个阶段并行培训神经网络。并行性允许处理相对较大的数据集,但需要一个补充步骤来同步在不同网络上完全未包装的阶段。

Interferometry can measure the shape or the material density of a system that could not be measured otherwise by recording the difference between the phase change of a signal and a reference phase. This difference is always between $-π$ and $π$ while it is the absolute phase that is required to get a true measurement. There is a long history of methods designed to recover accurately this phase from the phase "wrapped" inside $]-π,π]$. However, noise and under-sampling limit the effectiveness of most techniques and require highly sophisticated algorithms that can process imperfect measurements. Ultimately, analysing successfully an interferogram amounts to pattern recognition, a task where radial basis function neural networks truly excel at. The proposed neural network is designed to unwrap the phase from two-dimensional interferograms, where aliasing, stemming from under-resolved regions, and noise levels are significant. The neural network can be trained in parallel and in three stages, using gradient-based supervised learning. Parallelism allows to handle relatively large data sets, but requires a supplemental step to synchronized the fully unwrapped phase across the different networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源