论文标题
领域概括的人在注意力感知多手术策略上重新识别
Domain generalization Person Re-identification on Attention-aware multi-operation strategery
论文作者
论文摘要
域的概括人员重新识别(DG RE-ID)旨在直接部署一个在源域上训练的模型,以良好的概括为看不见的目标域,这是一个具有挑战性的问题,在现实世界部署中具有实际价值。在现有的DG RE-ID方法中,不变操作有效地提取域的概括特征,实例归一化(IN)或批处理标准化(BN)用于减轻对看不见域的偏见。由于用于捕获各个源域的可区分性的特定于域特定信息,因此不看到域的广义能力是不令人满意的。为了解决这个问题,提出了针对DG Re-ID的注意力吸引的多操作策略(AMS)来提取更广泛的特征。我们研究了不变的操作,并基于In和组美白(GW)构建多操作模块,以提取域不变特征表示。此外,我们分析了不同的域不变特征,并将空间注意力应用于操作并将注意力转移到GW操作上,以增强域不变特征。提出的AMS模块可用作插件模块,以将其纳入现有网络体系结构中。广泛的实验结果表明,AMS可以有效地增强模型的概括能力,使其无法看到域的概括能力,并显着提高了具有十个数据集的三个协议,DG RE-ID中的识别性能。
Domain generalization person re-identification (DG Re-ID) aims to directly deploy a model trained on the source domain to the unseen target domain with good generalization, which is a challenging problem and has practical value in a real-world deployment. In the existing DG Re-ID methods, invariant operations are effective in extracting domain generalization features, and Instance Normalization (IN) or Batch Normalization (BN) is used to alleviate the bias to unseen domains. Due to domain-specific information being used to capture discriminability of the individual source domain, the generalized ability for unseen domains is unsatisfactory. To address this problem, an Attention-aware Multi-operation Strategery (AMS) for DG Re-ID is proposed to extract more generalized features. We investigate invariant operations and construct a multi-operation module based on IN and group whitening (GW) to extract domain-invariant feature representations. Furthermore, we analyze different domain-invariant characteristics, and apply spatial attention to the IN operation and channel attention to the GW operation to enhance the domain-invariant features. The proposed AMS module can be used as a plug-and-play module to incorporate into existing network architectures. Extensive experimental results show that AMS can effectively enhance the model's generalization ability to unseen domains and significantly improves the recognition performance in DG Re-ID on three protocols with ten datasets.