论文标题

在多个图上学习部分匹配网络的宇宙模型

Learning Universe Model for Partial Matching Networks over Multiple Graphs

论文作者

Jiang, Zetian, Lu, Jiaxin, Wang, Tianzhe, Yan, Junchi

论文摘要

我们考虑了两个或多个图的部分匹配的一般设置,从某种意义上说,一个图中的所有节点都可以在另一个图中找到它们的对应关系,反之亦然。我们将宇宙匹配的视角与这个无处不在的问题相匹配,因此每个节点要么匹配虚拟宇宙图中的锚点,要么被视为异常值。这样的宇宙匹配方案具有一些重要的优点,这些优点尚未在现有基于学习的图表匹配(GM)文献中采用。首先,可以清楚地建模Inlier匹配和离群值检测的微妙逻辑,在成对匹配方案中处理否则不太方便。其次,它使端到端学习尤其是针对宇宙水平的亲和力度量学习,以匹配嵌入者,以及将异常值聚集在一起的损失设计。第三,由此产生的匹配模型可以轻松地处理在线匹配下的新到达图,甚至可以处理来自培训集的不同类别的图形。据我们所知,这是第一个可以应对两圈匹配,多挥发性匹配,在线匹配和混合图匹配的第一个深度学习网络。广泛的实验结果表明,在这些情况下,我们方法的最新性能。

We consider the general setting for partial matching of two or multiple graphs, in the sense that not necessarily all the nodes in one graph can find their correspondences in another graph and vice versa. We take a universe matching perspective to this ubiquitous problem, whereby each node is either matched into an anchor in a virtual universe graph or regarded as an outlier. Such a universe matching scheme enjoys a few important merits, which have not been adopted in existing learning-based graph matching (GM) literature. First, the subtle logic for inlier matching and outlier detection can be clearly modeled, which is otherwise less convenient to handle in the pairwise matching scheme. Second, it enables end-to-end learning especially for universe level affinity metric learning for inliers matching, and loss design for gathering outliers together. Third, the resulting matching model can easily handle new arriving graphs under online matching, or even the graphs coming from different categories of the training set. To our best knowledge, this is the first deep learning network that can cope with two-graph matching, multiple-graph matching, online matching, and mixture graph matching simultaneously. Extensive experimental results show the state-of-the-art performance of our method in these settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源