论文标题
Millenniumtng项目:物质聚类和光环统计的高精度预测
The MillenniumTNG Project: High-precision predictions for matter clustering and halo statistics
论文作者
论文摘要
对大型星系调查的宇宙学推断需要理论模型,这些模型将大规模结构的精确预测与稳健而柔性的星系形成模型结合在一起,整个宇宙体积足够大。在这里,我们介绍了千年(MTNG)项目,该项目将Illustristng的流体动力学星系组与千年模拟的大量模拟结合在一起。我们最大的流体动力模拟,覆盖(500 MPC/H)^3 =(740 MPC)^3,是通过一套仅使用固定和paired技术来降低大型可变的可变量的仅一套黑物质颗粒(质量分辨率为1.32 x 10^8 msun/h)的一套仅4320^3暗物质颗粒(质量分辨率为1.32 x 10^8 msun/h)的补充。水力模拟增加了4320^3气电池,可实现2 x 10^7 msun/h的baryonic质量分辨率。高时间的合并树木和直接的灯节输出有助于构建新一代的半分析星系形成模型,可以针对水力模拟和观察进行校准,然后应用于更大的体积-MTNG-MTNG包括1.1 Trillion的旗舰模拟,具有1.1 Trillion粒子和质量的质量粒子和质量中性元素(3000 mpc)^3000 mpc)^3000 mpc)^3000 mpc)^3000 mpc)^3000 mpc)^3000 mpc)^3000 mpc)在此介绍性分析中,我们对非线性聚类的基本度量(例如物质功率谱,光晕质量函数和光晕聚类)进行了收敛测试,并将模拟预测与当前宇宙仿真器的模拟预测进行了比较。我们还使用模拟来研究物质和光环统计,例如在重型声音振荡量表上进行晕圈偏差和聚类。最后,我们衡量了重型物理学对问题和光晕分布的影响。
Cosmological inference with large galaxy surveys requires theoretical models that combine precise predictions for large-scale structure with robust and flexible galaxy formation modelling throughout a sufficiently large cosmic volume. Here, we introduce the MillenniumTNG (MTNG) project which combines the hydrodynamical galaxy formation model of IllustrisTNG with the large volume of the Millennium simulation. Our largest hydrodynamic simulation, covering (500 Mpc/h)^3 = (740 Mpc)^3, is complemented by a suite of dark-matter-only simulations with up to 4320^3 dark matter particles (a mass resolution of 1.32 x 10^8 Msun/h) using the fixed-and-paired technique to reduce large-scale cosmic variance. The hydro simulation adds 4320^3 gas cells, achieving a baryonic mass resolution of 2 x 10^7 Msun/h. High time-resolution merger trees and direct lightcone outputs facilitate the construction of a new generation of semi-analytic galaxy formation models that can be calibrated against both the hydro simulation and observation, and then applied to even larger volumes - MTNG includes a flagship simulation with 1.1 trillion dark matter particles and massive neutrinos in a volume of (3000 Mpc)^3. In this introductory analysis we carry out convergence tests on basic measures of non-linear clustering such as the matter power spectrum, the halo mass function and halo clustering, and we compare simulation predictions to those from current cosmological emulators. We also use our simulations to study matter and halo statistics, such as halo bias and clustering at the baryonic acoustic oscillation scale. Finally we measure the impact of baryonic physics on the matter and halo distributions.